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S U M M A R Y  
The motion and decay of circular vortex rings with an inner viscous core is considered by systematic matching of 
inner and outer asymptotic expansions. The governing Navier-Stokes equations are reduced to a coupled integro- 
differential system. A method of construction of solutions for the integro-differential system is presented. The initial 
vorticity distribution may be non-similar. Also presented is a method for introducing a time shift which makes the 
first term in the series solution for the vorticity to be the "best" approximation. The analysis is then applied to the 
motion and decay of a pair of coaxial vortex rings. 

1. Introduction 

The motion and decay of circular vortex rings with non-similar vorticity distributions sub- 
merged in an inviscid stream is being considered. The geometry of the ring is presented in Fig. 1. 
The radius of the ring is denoted by R, the position of the center of the ring is Z, the effective 
radius of the vortical core is ~, and the ring has a circulation F. A toroidal coordinate system 
(r, 0) is attached to the center of the vortical core. The flow field in the absence of the ring is 
assumed to be a given axially symmetric inviscid flow. 
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Figure 1. Geometry of vortex ring. 

The classical inviscid theory for the motion of circular vortex rings (e.g. see [1]) contains 
some serious shortcomings [2]. These include: (i) the velocity at the center of the vortical core 
(r =0) is infinite; (ii) if the axial velocity of the ring becomes infinite as the size of the vortical core 
tends to zero (6 ~0) ;  (iii) 6 r 0, it must then be arbitrarily assigned in order to define the velocity 
of the ring; and (iv) the viscous effect is ignored even though the velocity gradient in the core is 
large. 

C. Tung and L. Ting [2] recognized that the assumption of vanishing viscous force becomes 
invalid near the center of the vortical core where velocities and radial derivatives are large. 
Therefore they divided the flow field into two regions, an inner region near the center of the 
vortical core where viscous forces are important, and an outer region away from the vortical 
core where the flow field is inviscid. Tung and Ting then introduced asymptotic expansions for 
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the vorticity and the stream function ~ in both the inner viscous region and'the outer inviscid 
region. The expansion parameter e = I/Re ~ was used, where the Reynolds number Re is defined 
as the ratio of the circulation F to the kinematic viscosity v. By the technique of systematic 
matching [3] Tung and Ting derived a coupled system of partial differential equations in space 
and time and ordinary differential equations in time to govern the decay of the vorticity, the 
flow field and the motion of the vortex ring. In order to uncouple the partial differential 
equation for the decay behavior from the others, Tung and Ting assumed that the vorticity 
distribution is similar. This implied a restriction on the initial data. They then used this vorticity 
distribution to find equations for the axial and radial motion of the ring. 

In the present paper no restriction is imposed on the initial vorticity distribution. The solution 
for the partial differential equation for the flow field and the matching condition are combined 
to yield an integro-differential equation in t for the axial position of the: ring. The partial 
differential equation for the vorticity is uncoupled by the introduction of new variables in 
section 3. This equation is then independent of both the outer inviscid solution and the in- 
stantaneous position of the ring. A solution for the vorticity as a series of eigenfimctions is then 
obtained. The coefficients in the series are related to the initial data. These solutions are then 
combined with the remaining ordinary differential equations to form a system of integro- 
differential equations in t for the motion of the ring. This system is then integrated numerically 
for a given initial position of the ring. 

Inspection of the partial differential equations for the vorticity yields that the equation is 
independent of the initial value of the new variables (see above), and therefore independent of a 
translation in these variables. A shift is chdsen in section 5 which makes the second term in the 
series for the vorticity distribution vanish. This is equivalent to the "optimum solution" 
introduced by Ting and Chen [4] for boundary layer theory and subsequently used by Kleinstein 
and Ying [5] for heat conduction problems and by Ying [6] for two-dimensional vortices. The 
accuracy of one term optimum solutions as compared to the series solution is demonstrated 
in the study of the motion and decay of two co-axial vortex rings. 

2. Equations for the Motion and Decay of the Ring 

The governing equations for the leading terms for the motion and decay of circular vortex rings 
were first derived by Tung and Ting [2] and subsequently modified for the general three- 
dimensional case by Ting [6]. In this section are presented an outline of the derivation of those 
equations with slight modifications in order to facilitate the subsequent analyses. 

The basic governing equations for the motion and decay of circular vortex rings are given by 
the Navier-Stokes equations. In the outer region, the flow is irrotational (~ = 0) and the stream 
function g-' is expanded in a power series in e: 

p, z, = 7'(~ p, z)+ p, z)+ . . . .  

In the inner region, the.radial variable is stretched, i.e. ~ = rh. The stream function T and the 
vorticity ~ in the inner region are also expanded in power series in e: 

0, 0)+ . . .  

and 
o, = o ) +  . . . .  

Substituting the above expansions into the Navier-Stokes equations, the following equations 
governing the two leading terms in ~ and ~ are obtained: 

?~I ~  F [?~o)3~ = (/~o/2Ro)[~2 ~(o)]e ' and 

~(2)?(o) ~(0)7(~) _ [~(O)/Ro] ~(o) sin 0 

(2.1) 

(2.2) 

(2.3) 

In Eqs. (2.1) through (2.3), ~ is the stream function of the velocity components ~7, ~ relative to 
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the center of the vortical core. In Eqs. (2.1) and (2.3), ~p(1) and ~(1) are the parts of ~(1) and ~(1) 
which depend on 0. In Eq. (2.3) R o is the leading term in the expansion of R (t, s) in a power 
series in s. The boundary conditions are given by the regularity conditions at ~= 0: 

tY~~ ~ = 0) = 0, ~(~ f = 0) = finite, (2.4) 

~P~l)(t, ? = 0) = 0 and lim [~(0a)(t, f, 0)/~] = 0, (2.5) 

and by matching the outer solution as r--,0 with the inner solution as ?~cc : 

= _ R o  -- ,  r/2z  (2.6) 

_ F I1 (6fRo) II 1 ~,(1)(t,~,O)---, ~ c o s 0  n - + Ro[- (wT-[%)s inO+(w*-Zo)cosO] .  
r 

(2.7) 

In Eq. (2.7) Z o is the leading term in the expansion of Z(t, s) in a power series in s, 2o =dZo/dt, 
[% = dRo/dt, and Wl* and w* are velocity components along the (p, z) axes evaluated at (Ro, Zo) 
without the contribution of the vortex ring. 

If ~m(t, ?, 0) is resolved into Fourier components in 0, Eq. (2.3) reduces to: 

~ 2 ~ I )  1 ~ 1 ,  ~ 1 Ro~~ i~(1)_ ~ " 
(2.8) 

where j = l ,  2, 3 ..., k = l  or 2, a a l = l  and ajk=0 otherwise. The regularity conditions at 
~=0 and the matching conditions at ~-~ov yields for ~(1) ~jk, J~  1, governed by Eq. (2.8): 

~ ) ( t , ~ ) = 0  for k = l  or 2, j = 2 , 3 , 4  . . . .  

The regularity conditions at ~=0 are enough to show that ~(a~(t, ~)=0 and 

~(1~ (t. ~)= ~ ~  JfSo {{[~(o,]2}-*" -at~o ~sssl 8 {sa[~o)]2}dsd ~ . (2.9) 

Then the matching conditions as r ~  oo yield: 

/~o (t)= w~ (t, Ro, Zo) (2.10) 
and 

Zo(t) = w~(t, Ro, Zo) + in - 1 - ~-~lim Rot T(l~(t' ~) ' (2.11) 

For large P, Eq. (2.11) reduces to: 

r 47c ~ -  ~ [~ ~o)]z In ~d~ + O ~ , (2.12) 

Substituting Eq. (2.12) into Eq. (2.11) results in: 

Zo(t, = w~(t. Ro, Zo)+  ~ {in I ~  -~ �89 (2.13, 

where 

K(t) = 4~2/F 2 ~ { [{~(~ )]e} in ~d~. (2,14) 

Eqs. (2.2), (2.10) and (2.13) are the equations governing the leading terms in the motion and 
decay of a circular vortex ring. The equations are coupled and make up an integro-differential 
system for ~(o)(t, ?), Ro (t) and Zo (t). Initial conditions on the three dependent variables are to 
be freely prescribed. 

The vorticity in the outer region is identically zero. Therefore matching ~(~ f) as f--,oo 
with the zero vorticity in the outer region requires that 

~(o,(~, t)= o (1/~ ~) (2.15) 
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for large ~, where ~ is any positive number. Eq. (2.15) holds because if ~o)(f, t)= O (1/~k), where 
k is finite, then ~(o)(?, t)= O (ek/ra), and would have to match with a non-zero outer region 
vorticity. Integrating Eq. (2.2) over the whole space yields that the total space integral of ~(o) 
is invariant, i.e. : 

I f  ~(o)(p, t)(27z0d ? = F .  (2.16) 

Then, since (/~o)~)~ = ?~o), 

~(o) 1 i e = _ t)d  ( 2 . 1 7 )  
r o 

and Eq. (2.16) implies that ~t~ as ?~oo, which is the matching condition Eq. (2.6). 
Thus the matching condition is satisfied independently of the functional form of the vorticity 
distribution. 

Eq. (2.15) implies that ~(0) decays exponentially with respect to ~. It will be seen in the next 
section that this condition implies that eigenvalues obtained in solving the transformed 
vorticity equations are discrete. 

3. Solution for the Decay of Ring 

Tung and Ting [-2] were able to construct similarly solutions of Eq. (2.2) by the change of 
variable t to 'c2 where: 

f' ~2 = &'Ro(t')/Ro(t). (3.1) 
o 

The similarity variable is then defined to b e ,  = f/(4F'c2) ~ and the vorticity distribution is 
Identified as the two-dimensional similarity solunon, For two-dimensional vortices (for which 
% = t) Ting [6] constructed non-similar solutions for ~t0/(t, ,)  by separation of variables. The 
result was a series solution of ~0) in terms of eigenfunctions. This procedure cannot be directly 
followed for vortex rings because the term on the right-hand side of Eq. (2.2) does not allow for 
a variable separable solution for ~(o)(22, ,). 

By introducing a new time variable -c a defined by 

dz~ = 
dt R, (t), r l (to) > 0 (3.2) 

and redefining % as 

= "c ,mo( t )  (3.3) 
a variable separable solution of Eq. (2.2) can be found. As a first step, let ~o)(t, ?) = f ( r t ,  , ) / r  2 
w h e r e ,  = ~/(4rz2) * in Eq. (2.2): 

z 1 f~, = { (t/f,), + (21/2f),}/4,. (3.4) 

Eq. (3.4) is independent of R o and is therefore uncoupled from the ordinary differential equa- 
tions for the position of the ring. Moreover, Eq. (3.4) is amenable to the method of separation 
of variables. Letting f(z l ,  , ) = F ( z l ) G ( , )  in Eq. (3.4) results in: 

F'zl  + 2 F  = 0 (3.5) 
and 

(,G')' + 2, 2 G'+ 4 ()~ + 1),G = 0.  (3.6) 

Letting ~= ,2  and B({)= e -~ G (x/~)in Eq. (3.6)yields: 

~B"+ (1 -~)B '  + ;~B = 0,  (3.7) 

The condition of exponential decay on ~(0), Eq. (2.15), implies that G must decay exponentially 
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with respect to t/, and therefore B cannot increase exponentially with respect to ~. Eq. (3.7) 
admits two type of solutions [-7], one having continuous eigenvalues and displaying exponential 
growth, the second having discrete eigenvalues 2 = n = 0, 1, 2 . . . .  With 2 = n, Eq. (3.7) reduces 
to Laguerre's Equation and therefore B (~)= L, (~) where L, ({) is the n th Laguerre polynomial: 

(-1FVIE( -m) m mq. (3.8) 
m=O 

With the restriction of Eq. (2.15), the second type solution for B({) is the only admissible one. 
Then the solution of Eq. (3.6) is given by G,=exp(-rl2)L,(rl2). The solution of Eq. (3.5) is 
then F = 1/z~, and therefore 

( (~  e2!~ ~ C"L';(r/2) (3.9) 
~ 2 n = O 72] 

The coefficients C, are related to the specified initial data (m)(to, f) by [5] 

C. = t~o t'io .fo L"(n2)('~ [(t~ n (4rz~o)q d(, ~) (3.10) 

where %o and r2o and z~ and z 2 evaluated at t = t  o, respectively. 
Eqs. (3.8), (3.9), and (3.10) complete the solution for the vorticity (m)(t, P) for a given initial 

vorticity distribution ((o) (to, f). Eqs. (2.10) and (2.13) are then the resulting system for the position 
of the ring, R0 and Zo, which is discussed in the next section. The initial values r~o and %0 are 
discussed in section [5]. 

4. The Governing System for the Motion of the Ring 

In the previous section the decay behavior of circular vortex rings was obtained independently 
of the solution for the position of the ring. The governing equations for R o (t) and Zo (t) are 
Eqs. (2.10) and (2.13). The function K(t) appearing in Eq. (2.13) and given by Eq. (2.14)depends 
on ~(~ ~) which in turn can be related to ((~ ~) by Eq. (2.17). Therefore, since ((o) is now 
determined, K(t) is known. 

If Eq. (3.1) is differentiated with respect to time, a differential equation for z 2 is obtained, i.e. 

"C2 = 1 - ' c 2 / R  0 . (4.1) 

Eqs. (2.10), (2.13) and (4.11) form a first order differential system for the dependent variables 
Ro, Z o, and z2 with respect to the independent variable t. Initial conditions on R o and Z o are 
prescribed at t=  t o. The initial conditions for z2 will be discussed in the next section. 

VORTEX RINGS 
i~ l  i=2 \ 

! rr 
Rol(to ) �9 

r2 J RO'~(~O) 

I i / ~ I- ~o,,,o,~ 

I ~ L" 2 ~ol{ t~ 

Figure 2. Initial geometry for two coaxial vortex rings. 

The differential system is now ready to be integrated numerically for a given initial position 
of a vortex ring submerged in a given axially symmetric inviscid flow, i.e. given w~ and w*. 
Fig. 3 shows the results of the above numerical integration for the special example described in 
section (6). 
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5. Optimum Asymptotic Solution 

Integrating Eq. (3.2) yields 

z l  -'- R ( t ' ) d t ' + z l o  (5.1) 
,) to  

where ~1o ='c1 (to) is positive but otherwise arbitrary. The restriction Z lo > 0 is necessary to 
obtain series solutions for the vorticity of the type discussed in section (3). The arbitrariness of 
zlO is due to that in deriving Eq. (3.4) only Eqs. (3.2) and (3.3) were needed, and not Eq. (5.1). 
Combining Eqs. (3.3) and (5.1) yields 

z2 = R(t')dt'  + Zlo (t) (5.2) 
to 

and therefore : 

%0 = z2 (to) = ~1o/R (to). (5.3) 

Since ~1o is arbitrary, a convenient way of choosing it is to make the first term in the series 
for ~o), Eq. (3.9), approximate ~(o) as well as possible, i.e. setting Ca =0.  This results in 

fcC 1 [~2 ~(0)(to, f)] (2nf dP) 
= 0 

and therefore the optimum shift for the variable ~1o is 

~*o = [No(to)~ 4r2]  [f2V~ f)](2~fdf) 
o 

where ~(o)(to, f) is the given initial vorticity distribution. 
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~R~ i POSITRON TRAJECTORY OF / / - - C Y C L E  A-CYCLE 
Ro(t o) ] / \ VORTEX RING i=2 / /  / I 
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SYMBOL Q El ~ ~ 1~ C5 X V [7 ~> <] ~1 ~1 GRAPH= 
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( t "  t 0 ) F I CYCLE 

0 I 2 3 4 5 6 7 8 9 I0 II 12 12.5 
Ro 2 (t o) 

Figure 3. Trajectory of a pair of coaxiM vortex rings. 
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Figure 4. Vortical core sizes vs. time for one cycle. 

(5.4) 

( 5 . 5 )  

The integral of the one term optimum solution matches the integral of the initial profile 
regardless of the choice of %o because setting the above two integrals equal to each other 
recovers the definition of Co, Eq. (3.10) with n = 0. The one term solution for ~co) is given from 
Eqs. (3.9) by C O e-nZ/z2, and therefore 
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Then 

(to, f)~d~ = - -  CO e - " ~ d f  , . 
"c 2 

f oO Co-- Z2o ~o)(to, ?) ?d? (5.6) 
o 2Fz2o  

which is indeed the same as Eq. (3.10) with n=0. In general the second moment of a one term 
solution for ~(o) evaluated at to will not match the second moment of the initial profile. However, 
if the optimum one term solution is used, these second, moments do match. This can be seen 
by matching these second moments 

i f ~t~ f)r2fd~ = __C~ e - ~ Z f d ~ .  
0 ~'20 0 

From Eqs. (2.16) and (5.6), Co =�88 and therefore 

= 

which comparing with Eq. (5.4) shows that 22o = ~o- Therefore the one term optimum solution 
not only has the mathematical advantage of having C~ = 0, but also has the physical advantage 
that its initial second moment matches the second moment of the given initial profile. 

One term optimum solutions were computed for the example discussed in the next section. 
The results were within �89 % of the "exact" results shown in Figs. 3 and 4. 

6. Example:--A pair of Coaxial Vortex Rings 

In order to illustrate the results of the previous sections, a specific example is considered here. 
The following must be specified : (i) the initial vorticity distribution ; (ii) the initial geometry of 
the ring; (iii) a given external inviscid flow in the absence of the ring. 

The problem considered is that of two coaxial vortex rings, decaying and moving under 
mutual influence. The motion of a vortex pair was observed by Helmholtz (1867) and Reynolds 
(1876) and Lamb [1] gives a word description of their observations. 

The initial geometry of the two rings is presented in Fig. 2. The initial vorticity distribution 
is assumed to be: 

(~0)(to, ~) = { 0 for ~>3oi } 
2s i for ~<Soi i = 1 , 2  (6.1) 

where aoi=6oi/e and f2i=Fi/2rc3~i. Then from Eq. (3.10) 

% n! (-  ly2J 
c . =  ( j + l ) ( / ! ) 2 ( n _ j ) ! .  (6.2) 

j=O 

In Eq. (6.2) and in what follows the subscript i is omitted. It is understood that in each case there 
are two such equations, one for each vortex. In deriving Eq. (6.2),'c 10 was taken to be the optimum 
shift z~0. From Eqs. (5.4) and (6.1)- 

= 3 /8r 

and then Eq. (5.5) results in: 

Z~o = R o (to) 32/8F.  

The function K(t )  appearing in Eq. (2.13) can now be written explicitly using Eqs. (2.17), 
(3.8), (3.9), and (6.2): 

K(t)  = In [4F~a]}+ 64rd Q(,I, t/) S(r,, t/) In t/dr/ (6.3) 
o 
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where 

Q(%, 1/) = [~/~(o)], = ?~(o) = t/e -"2 - -  L,(t/2) 
n = O "~ nl 

and 

= 0 ,=o ;~- m~om[(n-m)'.,=o k ' ' .  

The external inviscid flow for each vortex is wholly due to the other vortex. From Lamb [-1], 
the inviscid stream function at a point (p, z) due to a vortex ring located at (R', Z') is given by 

~ (q +rz)[K(2)- E(2)] (6.4) 7/* 

where 2 = (r2 - rl)/(F, Av F2), F2 1 , 2 = ( z - Z ' ) 2 q - - ( p ~ - R ' )  2, and  K and E are the complete elliptic 
integrals of the first and second kind, respectively. The velocity components are then given by 

1 ~ 7  j 1 ~ 
w ~ ' -  and w ~ = -  - -  

r ~z p ~ p '  

or, using Eq. (6.4) 

F (z-Z')(1 1 ) [  K 1+22 E]  (6.5a) 
- + _ 2 2  , w~ 2zc p \r~ ~ 1 J 

and : 

w~ = 2 ~ p  \ r I r2 / 1-,~ 2 "- \ r~ r2 E ,  (6,58) 

For the two vortex ring configuration, the label i identifies the particular ring as in Fig. 2 
(Zoo(to) >Z0~(to)). Then for the vortex ring i= 1, Eq. (6.5)is to be substituted into Eqs. (2.10) 
and (2.13) using the following parameters in Eq. (6.5): 

p = R 0 , ( t )  R '=Ro~( t )  F = F  2 
= Zoo(t) z ' =  Zo2(t) 

For the vortex ring i=  2, the correct parameters in Eq. (6.5) are: 

P= R~ R'= R~ F= F1 
z = Z o a ( t )  Z ' = Z o ~ ( t ) .  

With the use of Eqs. (6.3) and (6.5), the right-hand sides of Eqs. (2.10) and (2.13) are known 
functions of %, ~2, no and Z o. Eqs. (2.10), (2.13) and (4.1) were integrated numerically for each 
member of the vortex pair for the standard initial geometry. 

Rzo/Rlo = Z 2 0 / R l o  = 1"2/I" 1 = 1 , 1 
Zlo=O, 6o,/Ro~=6o~/Ro~=l/lOO~at t = t  0, R e = 1 0 6  

The resulting motions of the rings are presented in Fig. 3. The backward ring decreases in size 
(/~o < 0) and overtakes the forward ring (20, > 2o~) which is increasing in size (/~o~ > 0). Then 
the ring that was initially the backward ring becomes the forward ring, and vice-versa, so that 
the roles are reversed. The rings therefore take turns overtaking each other and going through 
each other. This behavior is the one observed by Lamb [1]. 

Tung and Ting [2] derived an expression for the effective radius of the vortical core 

(t) = (4w2) r . (6.6) 

The result from inviscid theory is 

6i, ~ ~ (1/R)~. (6.7) 

This last result is based on geometric arguments in conjunction with conservation of mass 
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�9 considerations. Fig. 4 displays graphs of Eqs. (6.6) and (6.7) for both vortex rings in the example 
being considered. In both cases, the core radius increases faster than predicted by inviscid 
theory. Moreover, at the end of one cycle inviscid theory predicts no change in the core radius, 
while the present theory predicts an increase in the core radii of both vortices. The latter result, 
which is due to viscous diffusion is the observed effect. (When the vortices return to a relative 
position similar to their initial relative position, they have completed one cycle. Figs. 3 and 4 
are all plotted for one cycle). In Fig. 4 the net change in core radius for each vortex is indicated 
at the end of one cycle. 

The results displayed in Figs. 3 and 4 were obtained by using enough terms in the series for 
~(o) (gq. 3.9) to insure an accuracy of0.01% in R o (t), Z o (t), and ~2 (t). Results were also obtained 
using the optimum solution of section 5, and these results were within �89 of the "exact" 
solutions shown in Figs. 3 and 4. 

7. Concluding Remarks 

A method of construction of solutions for the motion and decay of circular vortex rings has 
been presented. The initial vorticity distribution may. be rton-similar. Also presented is a method 
for introducing a time shift which makes the first term in the series solution for the vorticity be 
the "best" approximation. Finally, the analysis is applied to the motion and decay of a pair of 
coaxial vortex rings. 
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